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A B S T R A C T 
 
Partitioning clustering has been one of the key components of data analytics to discover 
meaningful patterns in agricultural big data, driven by the increasing use of IoT-based 
technologies in smart farming. In partitioning clustering, the quality of clustering or 
performances of clustering algorithms are mostly evaluated by using the internal validity 
indices. In this study, the effectiveness of some widely used internal fuzzy indices are 
compared using the basic Fuzzy C-Means clustering algorithm. It is especially aimed to 
investigate changes in the effectiveness of validity indices when fuzzy data points are at 
different distances from the cluster centers. According to the results obtained on the 
simulated two-dimensional datasets, Fuzzy Silhouette, Fuzzy Hypervolume and Kwon 
are the most successful indices in validation of fuzzy clustering results. 

  

1. Introduction 

In data mining for knowledge discovery, clustering is one of the most widely used unsupervised 
learning techniques to explore the meaningful substructures or patterns in examined datasets. Clustering 
as an exploratory data analysis is frequently applied in almost every area of agriculture, food, 
environment and the other life sciences subjects ranging from genomics to biomedical image 
segmentation. In recent years, clustering has gained an increasing importance in knowledge discovery 
from the big data collected via agricultural data acquisition systems and sensors networks based on the 
systems using IoT with special reference to precision agriculture (Vendrusculo & Kaleita 2011; Cao et 
al 2012; Tian & Li 2015; Bangui et al 2018, Marcu et al 2019). Recently, Majumdar et al (2017) 
analyzed the agricultural big data for finding optimal parameters to maximize the crop production using 
clustering based data mining techniques. Since the agricultural data frequently exhibit fuzzy 
characteristics, the use of the fuzzy algorithms and validation techniques are required for clustering 
applications on agricultural datasets. 

Cluster analysis aims to divide a dataset into c (or k), numbers of groups by using the hierarchical or 
non-hierarchical clustering algorithms. As a result of clustering, similar set of data points are brought 
together to form subgroups which are called as clusters. In a partitioning cluster analysis, partitioning 
with the number of clusters that are actually present in an examined dataset or at least with an 
approximation of it results in good quality of clustering. For this reason, the quality of a clustering is 
checked via a process called as cluster validation. It is mainly carried out for three purposes: 

a) To search the number of clusters giving the optimal clustering result for a dataset, 
b) To understand which of the two or more clustering algorithms applied to the same dataset is 

better, 
c) To decide which levels of the parameters, i.e. the amount of fuzziness, perform as the best 

with an examined algorithm. 

Usually the validity indices are classified as 'external indices', 'internal indices' and 'relative indices' 
(Kovács et al 2005; Rendón et al 2011). The external indices compare the obtained classes from a 
clustering session with the previously known classes (Dudoit & Fridlyand 2002). In this case, it is 
already known which data points belong to which clusters, and this information is used as a reference 
for validation of clustering quality. These indices are very useful in evaluating the success of a clustering 
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algorithm because the real pattern of clusters is known (Liu et al 2010). On the other hand, the internal 
indices do not require any external information, and determine the validity of the clustering results using 
the analyzed data only (Thalamuthu et al 2005). Finally, the relative indices compare the results from 
the runs of one or more clustering algorithms with different input parameters on the same dataset.  

The internal indices are often used to assess the clustering quality because clustering is an 
unsupervised learning technique, that is, it is used to determine the clustering tendencies on a dataset 
when its structure is unknown. In the literature, various internal validity indices have been proposed for 
validating partitioning clustering results. Many of them have been listed and reviewed in detail in several 
studies (Milligan & Cooper 1985; Halkidi et al 2001; Liu et al 2010; Rendón et al 2011; Charrad et al 
2012). As given in some comparative studies (Arbelaitz et al 2013; Van Craenendonck & Blockeel 
2015; Hämäläinen et al 2017), most of the existing internal indices are available to use with traditional 
K-means and its derivative hard clustering algorithms. Hence, they cannot be efficient in assessing the 
results of fuzzy clustering algorithms such as Fuzzy C-means (FCM) and its successors. In this regard, 
a taxonomy of the internal validity indices for hard and soft clustering can be viewed in the related 
literature (Bensaid et al 1996, Halkidi et al 2002).   

The indices such as partition coefficient and partition entropy have been originally introduced with 
FCM. Later, the more efficient indices have been developed to improve the performance in finding fuzzy 
partitions in datasets (Wang & Zhang 2007). However, each of the cluster validation indices has a 
number of pros and cons because the performance can be varied depending on different factors such as 
shape, volume, orientation and number of the clusters in the examined datasets. Although the above 
mentioned factors were carried out in the most of the comparison works (Bataineh et al 2011; Zhou et 
al 2014; Zhu et al 2019), the effect of the distances between fuzzy data points and cluster centers has 
not been taken into account yet.  But our intuition is that the effectiveness of the fuzzy internal validity 
indices can be also influenced by the distances of fuzzy points to the cluster centers. So, this study aims 
to compare the performances of fuzzy internal validity indices using the results from FCM clustering 
algorithm on some simulated datasets containing different number of clusters with different distances 
between a fuzzy data point and the cluster centers. 

2. Related Works 

Let X be a numeric dataset of n data objects in the p-dimensional data space R. 

X={x1, x2, ... , xn}⊆ Rp       (1) 

In Equation 1: 
n is the number of data objects in the dataset X, 1≤ n ≤ ∞ 
p is the number of features (or variables) which describe the data objects, 
xj is the feature vector of p-length for the data object j.  

The probabilistic and possibilistic clustering algorithms partition a given dataset X into c, a 
predefined number of clusters through the minimization of their related objective functions with some 
probabilistic or possibilistic constraints. In the clustering context, clusters are mostly represented by 
their prototypes. A prototype is generally the center of a cluster which can be either centroids or medoids. 
The prototypes of clusters are provided in the prototypes matrix, V. 

V={v1, v2, ... , vc}⊆ Rn        (2) 

In Equation 2: 
c is the number of clusters, 1 ≤  c ≤ n 
vi is the prototype vector of p-length for the cluster i. 

The probabilistic and possibilistic partitioning clustering algorithms start with the initialization of a 
cluster prototype matrix V, and updates it through the iteration steps until it is stabilized.  The clustering 
algorithms compute the membership degrees of data objects by using some distance metrics for 
calculation of their proximities to the cluster centers. A distance measure, d(xj,vi), represents the distance 
between the data object xj and cluster prototype vi. In general, the squared Euclidean distance metric is 
used in most of the applications:  



Journal of Agricultural Informatics (ISSN 2061-862X) 2019 Vol.10, No. 2:1-14 
 

 

doi: 10.17700/jai.2019.10.2.537  3 
Zeynel Cebeci:: Comparison of Internal Validity Indices for Fuzzy Clustering 

deuc.sq(xj,vi)  d2(xj,vi) = || xj-vi ||2 = (xj-vi)T (xj-vi)      (3) 

The clustering algorithms are usually run with the squared Euclidean distance norm, which induces 
hyper-spherical clusters. Therefore they are able find the clusters with the same shape and orientation 
because the norm inducing matrix is an identity matrix: A=I. On the other hand, the distance metrics can 
be also employed with a diagonal norm inducing matrix A=I 1/σj

2 of n×n size. This norm matrix 
modifies the distances depending on the direction in which the distance is measured (Timm et al, 2004; 
Balasko et al 2005). In this case, the squared Euclidean distance with the norm matrix A is formulated 
as in Equation 4. 

deuc.sq(xj,vi)  d2
A(xj,vi) = || xj-vi ||2 A

 = (xj-vi)T A (xj-vi)   (4) 

The partitioning clustering is based on the partition of the dataset X by minimizing the objective 
functions (J) of various clustering algorithms depending on a certain distance norm, cluster prototypes 
(or cluster centers) and other first-order conditions. Partitioning clustering algorithms are classified into 
two groups as hard and soft clustering algorithms. In hard clustering, each object in the dataset X can be 
a member of one and only one cluster. Contrarily, in soft clustering, an object is not only a member of 
a particular cluster but a member of all clusters with varying degrees of membership. In other words, an 
object is not forced to be a member of a specific cluster, on the contrary, it becomes a member of all of 
the clusters with some degrees ranging between 0 and 1. This fuzzification approach solves the 
membership problems arising due to the data objects close to the boundaries of neighbor clusters in the 
dataset X. 

2.1. Fuzzy C-Means Algorithm 

Fuzzy C-Means (FCM) clustering algorithm was firstly studied by Dunn (1973) and generalized by 
Bezdek in 1974 (Bezdek 1981). Unlike K-means algorithm, a data point is not only the member of one 
cluster but also the member of all clusters with varying degrees of membership between 0 and 1. FCM 
is an iterative clustering algorithm that partitions the dataset into a predefined c clusters by minimizing 
the weighted within group sum of squared errors. The objective function of FCM can be expressed in 
Equation 5. 

𝐽 (𝑿; 𝑽, 𝑼) = ∑ ∑ 𝑢  𝑑 𝒙 , 𝒗       (5) 

In Equation 5: 
vi is the prototype (centers) vector for cluster i,  
xj  is the feature vector for data object j,  
d2(xj, vi) is the Euclidean distances between prototype vi and the data object xj,  
uij is the fuzzy membership degree of object j to the cluster i, 
m is the parameter of fuzzy exponent. 

In the objective function JFCM, the fuzzifier exponent m is usually set to 2. However, it can be any 
positive real number: 1 ≤ m ≤ ∞. The higher values of m result with fuzzier clusters while lower values 
of it give harder clusters. If it equals to 1, FCM becomes a hard algorithm and produces the same results 
with K-means clustering.  

FCM must satisfy the constraints given in the formulas in 6, 7 and 8.  
𝑢 ∈ [0,1];   1 ≤ 𝑖 ≤ 𝑐;  1 ≤ 𝑗 ≤ 𝑛      (6) 
0 <  ∑ 𝑢 < 𝑛;   1 ≤ 𝑖 ≤ 𝑐       (7) 
∑ 𝑢 = 1;   1 ≤ 𝑗 ≤ 𝑛       (8) 

In FCM, membership degrees and cluster prototypes are minimized by updating them with Equation 
9 and 10, respectively. 

𝑢 = ∑
( , )

( , )
 1 ≤ 𝑖 ≤ 𝑐;  1 ≤ 𝑗 ≤ 𝑛   (9) 
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𝒗 =
∑  𝒙

∑
  1 ≤ 𝑖 ≤ 𝑐      (10) 

In fuzzy clustering, there are two sources of the fuzziness in a clustering result. The first one is the 
overlapping degree of the clusters in the analyzed dataset. With Equation 9, a data point which has equal 
distance to the cluster centers of two overlapped clusters becomes the member of both in equal degree 
of membership. Secondly, when the proportions seen in Equation 9 are too high, the value becomes 
cramped around 1.  

FCM has been a workhorse for fuzzy clustering in numerous application. However, it has been found 
that it is sensitive to noise and outliers in datasets. In order to avoid this problem, Krishnapuram and 
Keller (1993, 1996) proposed the Possibilistic C-Means (PCM) algorithm that relaxes the probabilistic 
constraint of FCM but it can generate coincident clusters with poor initializations. Hence, some other 
versions of FCM and PCM have been developed to eliminate the problem with the original PCM. Fuzzy 
Possibilistic C-Means (FPCM) algorithm (Pal et al 1997) and later the Possibilistic Fuzzy C-Means 
(PFCM) algorithm (Pal et al 2005) were proposed to overcome the noise sensitivity defect of FCM and 
the coincident clusters problem of PCM, and the row sum constraints problem of FPCM. The 
Possibilistic Clustering Algorithm (PCA) was proposed to improve FCM and PCM (Yang & Wu 2006). 
Wu et al (2010) introduced the Unsupervised Possibilistic Clustering (UPFC) algorithm as an extension 
of PCA. UPFC is an algorithm that tries to improve the noise sensitivity problem of FCM and the 
coincident clusters problem of PCM. It also has the advantage that it does not need an FCM initialization 
for possibilistic part of the clustering. Although several probabilistic and possibilistic algorithms are 
available for fuzzy clustering, the basic FCM is used in this study because the problematic factors that 
may affect the success of FCM are controlled with the simulation of datasets. 

2.2. Internal Validity Indices for Fuzzy Clustering 

Since clustering aims to maximize intra-class similarity and inter-class difference, the validity indices 
measure the compactness and separation of clusters after a clustering session. Compactness is a measure 
of how the data points in a cluster are interrelated or adherent to each other. Separation reveals how 
much a cluster is separated or distinct from the others. So, the low compactness and high degree of 
separation indicate a good quality of clustering. The internal validity indices compared in this study are 
described below. 

Partition Coefficient (PC) can be considered as the first validity index proposed by Bezdek who also 
developed the basic fuzzy clustering (FCM) algorithm (Bezdek 1974a). Because it is calculated only 
from fuzzy membership values, PC is a computationally low-cost index as formulated in Equation 11. 
Although it is simple, its effectiveness is comparable to the indices PE and XB when the clusters are 
spherical in the dataset. It was even concluded that if the number of clusters to start an algorithm is 
chosen larger than the actual one, PC may be better than the index XB (Cebeci & Yildiz 2015). 

𝐼 (𝑼) = ∑ ∑ 𝑢        (11)  

An index value is computed in the range [1/c, 1] using the IPC formula in Equation 11.  The index 
value of max{IPC(ci)} ; 2  i  cmax gives the best clustering. Here, the number 2 and cmax respectively 
denote the minimum and the maximum number of clusters to start the FCM runs. ci is the ith number of 
clusters in this range. While a lower value of an index which is close to the lower boundary of the range 
indicates fuzzier clusters, hard clusters are obtained as it approaches to upper boundary, 1. If the index 
is equal to 1/c, all members of the clusters have equal membership degrees (uij = 1/c) that indicates that 
there is no clustering tendency or the applied clustering algorithm fails to find the clusters in the given 
dataset (Halkidi et al 2002).  

Modified Partition Coefficient (MPC) was proposed by Dave (1996) in order to reduce the monotonic 
decreasing tendency of PC depending on the magnitude of c. 

𝐼 (𝑼) = 1 − (1 − 𝐼 )      (12) 

IMPC index values are in the range [0, 1]. The value of max{IMPC(ci)} ; 2  i  cmax indicates the best 
clustering result.  
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Partition Entropy (PE) proposed by Bezdek (1974a) is a simple entropy based index which is 
calculated as in Equation 13. 

𝐼 (𝑼) = ∑ ∑ 𝑢  𝑙𝑜𝑔 (𝑢 )       (13) 

In Equation 13, b represents a logarithm base. IPE values are obtained in the range [0, logb(c)]. Unlike 
PC index, smaller IPE values show the presence of well separated clusters while cluster structures 
become fuzzy if IPE values approach to the upper boundary of the range. An IPE index value equal to 
logb(c) indicates that there is no clustering tendency in the dataset or the used algorithm fails to partition 
data completely. Therefore, min{IPE(ci)} ; 2  i  cmax is the index value giving the best quality of 
clustering. 

The indices PC and PE show monotonic dependence on c, the number of clusters used to start FCM 
runs. By the number of clusters, while a peak is searched in the PC graph a pit point is searched by the 
number of clusters in the PE graph. Both indices are sensitive to the fuzziness parameter m. Thus, as m 
goes to 1, the indices give the same values for all c’s. However, when m goes to ∞, both indices show a 
significant peak or valley at c = 2. Another disadvantage of both indices is that they do not take the 
structural information and shapes of clusters into account because the dataset X is not used in calculation 
of these indices. 

Fukuyama & Sugeno (1989) suggested an internal index to fix the problems with the indices PE and 
PC. As it is seen in Equation 14, the first term of the Fukuyama-Sugeno Index (FS) is the compactness 
of clusters while the second term is the separation measure that indicates the distances of the cluster 
representatives from each other. 

𝐼 (𝑿; 𝑽, 𝑼) = ∑ ∑ 𝑢 𝒙 − 𝒗 − ∑ ∑ 𝑢 𝒗 − ∑ 𝒗    (14) 

In Equation 14, the first term takes into account geometry in the representation of X with respect to 
the prototypes in V, and fuzziness provided with U. The second term adds the distance of the prototypes 
from the overall mean and the fuzziness in each row of U. Since smaller 𝐼  values indicate the presence 
of compact and well-separated clusters, min{IFS(ci)} ; 2  i  cmax gives the most successful clustering 
result. Pal and Bezdek (1995) reported that the index FS is sensitive to both low and high values of  
parameter m. 

Xie and Beni (1991) developed the fuzzy validity index which is known as the Xie-Beni Index (XB) 
in Equation 15 when the parameter m is set to 2. The numerator of the equation considers the distance 
of objects in a cluster from their cluster centers and measures the compactness of fuzzy clustering. The 
denominator term represents the strength of the separation of clusters with the distance between cluster 
centers. 

𝐼 (𝑿; 𝑽, 𝑼) =
∑ ∑ 𝒙 𝒗

 , ,.., ; 
{‖𝒗 𝒗 ‖ }

        (15) 

Smaller values of the index XB indicate more compact and well-separated clusters. However, the 
XB index decreases monotonically as c approaches to n. In order to eliminate this tendency, a cmax value 
is determined as the starting point of monotonic behavior, and then min{IXB(ci)} ; 2  i  cmax is used to 
find the best clustering result. Another disadvantage of the index XB is that it goes to infinity as m also 
goes to infinity. 

Kwon's validity index (K) eliminates the problem of monotonic decreasing tendency that occurs due 
to the increase in the number of clusters for the index XB. For this purpose, Kwon (1998) added a second 
term to the nominator of the index XB in order to penalize high cluster numbers as seen in Equation 16. 

𝐼 (𝑿; 𝑽, 𝑼) =
∑ ∑ 𝒙 𝒗  ∑

1

𝑛
∑ 𝒙𝑙

𝑛
𝑙=1

{‖𝒗 𝒗 ‖ }
   (16) 

The optimal clustering for the index K is investigated with min{IK(ci)} ; 2  i  cmax. 
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Chen & Linkens (2004) proposed the Chen-Linkens index (CL) that consists of two terms. As it is 
seen in Equation 17, the first term of CL formula reflects the compactness within a cluster. The second 
term indicates the separation degree between the clusters. The optimal clustering is obtained at the 
maximum value of max{ICL(ci)} ; 2  i  cmax. 

𝐼 (𝑼) = ∑ max 𝑢 −
∑

∑ ∑ ∑ min (𝑢 , 𝑢 )   (17) 

Fuzzy Hypervolume (FHV) or Gath-Geva clustering validity index is based on the hypervolume and 
density of clusters in a given dataset.  The index FHV is formulated as in Equation 18 (Gath & Geva 
1989). 

𝐼 (𝑿; 𝑽, 𝑼) = (∑ [𝑑𝑒𝑡(𝐹 )]) /       (18) 

In Equation 18, Fi is the fuzzy covariance matrix of the cluster i. It is calculated as seen in Equation 
19. 

𝐹 =
∑ ( 𝒗 ) ( 𝒗 )

∑
       (19) 

Fi is used as a measure of compactness. If the clusters are soft, a fuzzy clustering with lower IFHV is 
expected. Hence, the value of min{IFHV(ci)} ; 2  i  cmax  indicates the best clustering. 

Pakhira et al. (2004, 2005) proposed the validity indices that can be used in both hard and soft 
clustering. In order to differentiate these, Pakhira-Bandyopadhyay-Maulik (PBM) Index for fuzzy 
clustering is denoted as PBMF. 

𝐼 (𝑿; 𝑽, 𝑼) = ∙ ∙ 𝐷       (20) 

In Equation 20:  
𝐸 = ∑ 𝑢 𝒙 − 𝒗        (21) 

𝐸 = ∑ ∑ 𝑢  𝒙 − 𝒗       (22) 
𝐷 = max

, ,.., ; 
‖𝒗 − 𝒗 ‖        (23) 

The authors of the index PBMF argue that the first term in Equation 20 reduces the value of index as 
c is increases. The second term is the ratio of E1 to Ec.  As formulated in Equation 21, E1 is a constant 
value for a given dataset. Since the ratio decreases with an increase in c, the value of index value 
increases as Ec decreases which indicates more numbers of compact clusters. The third term, Dc with 
the formula in Equation 23, measures the maximum separation between two clusters over all possible 
pairs of clusters. It increases with the value of c. The power p controls the contrast between the different 
cluster configurations, and is assigned as 2 in general. The optimal clustering with IPBMF is obtained at 
the maximum value of max{IPBMF(ci)} ; 2  i  cmax. 

The soft version of the Silhouette index (FSIL) can also be used in the assessment of fuzzy clustering 
results with the formula given in Equation 24. 

𝐼 (𝑿; 𝑽, 𝑼) =
∑ ( )

∑
      (24) 

In Equation 24, si(c) is the silhouette value for the data point i. It is calculated with the formula shown 
in Equation 25. 

 𝑠 (𝑐) =
 ( , )

         (25) 

In Equation 25, ai is the average dissimilarity between the data point i and all of the remaining data 
points in the same cluster. bi is the least mean dissimilarity between data point i and the data points in 
other clusters. The membership degrees uij and uij' are the first and second largest values in the ith row of 
the membership degrees matrix U, respectively. α is a weighing coefficient, generally set to 1. The 
optimal clustering is proposed at max{ISILF(ci)} ; 2  i  cmax. 
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The Average Partition Density (APD) index, proposed by Gath and Geva (1989) is formulated in 
Equation 26. In the formula, xj is the set of data points within a predefined region around the center of 
cluster i, which is the sum of the central members of cluster i. The best clustering is obtained with 
max{IAPD(ci)} ; 2  i  cmax. 

𝐼 (𝑿; 𝑽, 𝑼) = ∑
∑ ∈𝑿

𝒗
      (26) 

The validity-guided (re)clustering (VGC) algorithm uses cluster-validity information to guide a fuzzy 
(re)clustering process toward better solutions. It starts with a partition generated by a fuzzy clustering 
algorithm and then iteratively alters the partition by applying split-and-merge operations to form the 
clusters (Bensaid et al 1996). The authors proposed the Compactness / Separation (CS) ratio index in 
order to validate the results of VGC. The formula of CS index is shown in Equation 27. The value of 
min{ICS(ci)} ; 2  i  cmax gives the best clustering result. 

𝐼 (𝑿; 𝑽, 𝑼) = ∑
∑ (𝒙 ,𝒗 )

∑ ∑ ‖𝒗 𝒗 ‖
      (27) 

3. Experimental Works on the Simulated Datasets 

For experimental testing of the above mentioned research question, three artificial datasets having 
two, three and four clusters have been generated in order to validate the performances of the studied 
validity indices. In each of the clusters in all of the simulated datasets, five data points are created, one 
of which is the centroid. The non-centroid data points of the clusters are defined one unit away from the 
centroid. In other words, the radius of the clusters are 1. As illustrated with a red circle in Figure 1, a 
fuzzy data point positioned at an equal distance from the centroids of all the clusters has been added in 
each generated dataset. 

 

 

Figure 1. Pattern of the clusters and the location of fuzzy point in the simulated dataset c2r4 

Five different versions of each dataset are generated by placing the fuzzy object 2 to 6 units away 
from the centroids of clusters. As seen in the rows of Figure 2, these datasets are named as c2r2, c3r4, 
etc. For instance, c3r5 stands for the dataset having three clusters in which the fuzzy point is 5 units (d 
= 5  radius) away from the centroids of clusters. 
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Figure 1. Scatter plots of the cluster structures in the artifical datasets 

 

 

Figure 2. Changes in the values of indices by the number of clusters on the dataset c3r3 

 

In this study, the data analysis has been performed in R environment (R Core Team, 2019). The 
function fcm of the package ppclust (Cebeci et al 2017) has been run for FCM clustering. In order 
to decide an optimal value of number of clusters for an examined dataset, cluster analysis should be 
repeated for a range of number of clusters (c). For this reason, the function fcm has been run for five 
levels of c (from 2 to 6).  For each dataset, the function fcm has been started with the k-means++ method 
(Arthur & Vassilvitskii, 2007) to initialize the cluster prototype matrix V. The membership matrix U 
has been initialized using a novel fast initialization method proposed by Cebeci (2018). The fuzzification 
parameter m has been set to 2 in all the FCM runs. The relevant functions of the package fcvalid 
(Cebeci & Cebeci 2018), downloaded from GitHub have been used for validation of fuzzy clustering 
result at the end of each FCM run. The matrices U and V from these successive runs of FCM, which 
produce the minimum objective function value have been used to evaluate the performance of validity 
indices. The values of indices returned by the validity functions have been checked to obtain the 
proposed number of clusters for each dataset, as exemplified in Figure 2 and Table 1 for the dataset 
containing 3 clusters in which the cluster centroids are 3 units away from the fuzzy point. 
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Table 1. Proposed number of clusters for the dataset c3r3 

 Number of clusters examined in the FCM runs 
Index c=2 c=3 c=4 c=5 c=6 
IPC 0.740 0.7253 0.657 0.608 0.584 
IMPC 0.480 0.5880 0.542 0.510 0.501 
IPE 0.409 0.5066 0.668 0.799 0.873 
IXB 0.171 0.0908 0.130 0.219 0.172 
IK 2.989 1.8980 2.988 5.509 4.924 
ICL 0.591 0.6763 0.603 0.553 0.528 
IFHV 2.797 2.8985 3.602 4.435 4.950 
IFSIL 0.708 0.7289 0.682 0.468 0.336 
IFS -1.966 -28.8361 -30.330 -30.570 -29.729 
IPBMF 6.023 10.1041 10.421 8.718 7.485 
IAPD 5.720 5.4909 4.582 3.761 3.848 
ICS 27.252 42.6798 50.115 63.393 75.459 

 

As it is seen in Table 2, the indices of PE, XB, K and FSIL propose the actual number of clusters for 
all the datasets with two clusters.  The index APD is also successful to find the actual number of clusters 
except the dataset c2r4.  The indices PC, FHV and MPC overestimate the number of clusters for the 
dataset c3r6. The indices CL, FS, PBM and CS propose the number of clusters one more than the actual 
number of clusters in the datasets. The index FS is the worst to detect the fuzzy partitions for the dataset 
c2r2. The indices PE, XB, K and FSIL are stable regarding the change of distance levels of the cluster 
centers from the fuzzy point, and totally successful to find the actual number of clusters. 

Table 2. Proposed number of clusters for the datasets with two clusters 
 Distance of the fuzzy point to the 

cluster centers (d) 
Index 2 3 4 5 6 
IPC 2 2 2 2 3 
IMPC 2 2 2 3 3 
IPE 2 2 2 2 2 
IXB 2 2 2 2 2 
IK 2 2 2 2 2 
ICL 2 2 3 3 3 
IFHV 2 2 2 3 3 
IFSIL 2 2 2 2 2 
IFS 6 2 3 3 3 
IPBMF 2 2 3 3 3 
IAPD 2 2 3 2 2 
ICS 2 2 3 3 3 

 

According to the results in Table 3, the indices K and FSIL calculate the actual number of clusters at 
all the distance levels between the cluster centers and the fuzzy point. The indices of PE and FHV find 
the actual number of clusters except for the result on the dataset c3r2. All the indices except PE, K, 
FHV, and FSIL overestimate the number of clusters for the dataset having the clusters whose centers 
are 6 units away from the fuzzy point. The index APD also performs well except the datasets c3r2 and 
c3r6. 
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Table 3. Proposed number of clusters for the datasets with three clusters 
 Distance of the fuzzy point to the 

cluster centers (d) 
Index 2 3 4 5 6 
IPC 2 3 3 3 4 
IMPC 3 3 3 4 4 
IPE 2 3 3 3 3 
IXB 3 3 3 3 4 
IK 3 3 3 3 3 
ICL 3 3 3 4 4 
IFHV 2 3 3 3 3 
IFSIL 3 3 3 3 3 
IFS 4 3 3 4 4 
IPBMF 4 3 3 4 4 
IAPD 2 3 3 3 4 
ICS 2 2 3 4 4 

 

For the experimental datasets having four clusters, the indices FSIL and FS have superior 
performance to obtain the actual number of clusters at all the levels of distances between the fuzzy point 
and the cluster centers in all the datasets. The indices K, CL and FHV also perform well for all the 
distances. The index APD underestimates the number of clusters for the distance level of 2 but 
overestimates for the distance levels of 5 and 6. It is also interesting that the index APD overestimates 
the number of clusters for all the distances in the dataset having 4 clusters when compared to the datasets 
having 2 and 3 clusters in which it performs well. The index CS is also totally unsuccessful to find the 
actual number of clusters for all the distance levels.  

 

Table 4. Proposed number of clusters for the datasets with four clusters 
 Distance of the fuzzy point to the 

cluster centers (d) 
Index 2 3 4 5 6 
IPC 2 4 4 5 5 
IMPC 4 4 4 5 5 
IPE 2 2 4 4 5 
IXB 5 5 5 5 5 
IK 4 5 4 4 4 
ICL 4 4 4 4 5 
IFHV 2 4 4 4 4 
IFSIL 4 4 4 4 4 
IFS 4 4 4 4 4 
IPBMF 4 4 4 5 5 
IAPD 2 4 4 5 5 
ICS 2 2 5 5 5 

4. Conclusions 

The indices K and FSIL have successfully discovered the actual number of clusters for all levels of 
the distances between the fuzzy point and the cluster centers. The index FHV also performs well for the 
cases in which the fuzzy point is neither so close nor so far from the centers of clusters. The indices PC, 
MPC and PE tend to calculate the higher number of clusters than the actual ones in the cases where the 
fuzzy point moves away from the cluster centers. The index XB tends to overestimate the number of 
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clusters if a dataset contains more clusters within. This result indicates that the index XB loses its 
validation ability for greater values of the distances. The indices FS, PBM, APD and CS return accurate 
results if the fuzzy point is moderately distant (d = 3-4  avg. radius of clusters) from the cluster centers, 
otherwise they may not work well. These results show that these indices may not perform well if fuzzy 
points are too far from cluster centers.  

As a general conclusion, when compared to the others, the indices FSIL, FHV and K are more stable 
in validating fuzzy clustering results. Additionally, the results also show that average distance between 
fuzzy points and cluster centers should be taken into consideration to keep the effectiveness of fuzzy 
validity indices more stable. A future work can enhance the information on the efficiencies of internal 
validity indices for fuzzy clustering results on the real datasets, sourced from various IoT- based 
agricultural activities. So, we plan to test the performances of the fuzzy internal validity indices on real 
agricultural datasets. In addition, the future work will also consider to compare the performances of the 
examined indices for different orientations and volumes of clusters in simulated and real datasets.  
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