
Journal of Agricultural Informatics (ISSN 2061-862X) 2017 Vol. 8, No. 2:1-11 

 

 

doi: 10.17700/jai.2017.8.1.378  1 
Florian Rançon, Lionel Bombrun, Barna Keresztes, Christian Germain: Spatial pattern analysis of flavescence dorée 
repartition in vineyards from the Bordeaux region 

HungarianAssociation of AgriculturalInformatics 

European FederationforInformationTechnologyinAgriculture, 

Food and theEnvironment 

Journal of AgriculturalInformatics.Vol.8, No. 2 

journal.magisz.org 

Spatial pattern analysis of flavescence dorée repartition in vineyards from the 

Bordeaux region  

Florian Rançon1, Lionel Bombrun2, Barna Keresztes3, Christian Germain4 

I N F O 
Received 26 May 2017 

Accepted 2 Aug 2017 

Available on-line 14 Aug 2017 

Responsible Editor: M. Herdon 

 

Keywords: 

Flavescence dorée, Vine-

Growing, Epidemics, 

Geostastistics 

A B S T R A C T 
The devastating incidence of flavesence dorée on vineyards throughout the world 

motivates for a better comprehension of this epidemic disease. In this study, we highlight 

the characteristic spatial non-random distribution of flavescence dorée diseased plants on 

a set of 7 vineyards from the Bordeaux region. First, we propose a simple statistical 

framework using Monte-Carlo simulations in order to assess the randomness of the 

disease repartition. Several statistics are considered such as the mean distance to the 

nearest diseased neighbor or divergence (using Kullback-Leibler dissimilarity symmetric 

variant) of the distance histogram to the average distance histogram of random 

simulations. The performance of these statistics is first evaluated on a set of generated 

repartitions at different randomness levels using ROC curves as a visual representation of 

the risks associated with the test. Histogram comparison was found to be more effective 

and robust for the detection of non-random configurations. The proposed algorithm is 

then used on real data, showing significant aggregations patterns and edge effect on some 

of the plots for flavesence dorée diseased plants but also uprooted plants. 

  

1. Introduction 

 First reported in the French vineyards in the second half of the twentieth century (Caudwell 1957), 

Flavescence dorée (FD) is a quarantine disease with huge consequences on the vine-growing 

economy, including yield loss and degraded grape quality. It is caused by a phytoplasma vectored by 

the leafhopper species Scaphoideus titanus, making it an epidemiologic disease whose threat stems 

from fast propagation in the vineyard. Thus, insecticide treatment is mandatory in grapegrowing areas 

where the disease is widespread. Vineyards contaminated at a rate superior than 20% are rogued to 

stop the disease spreads. Affected vines show summer foliar symptoms depending on the cultivar, 

including yellowing and leaf curving (in a similar fashion as Bois noir disease) but also delayed or 

absent august hardening. Depending on the case, a short growth can also be observed during spring. 

Susceptibility to the disease seems to be highly cultivar-dependent and symptoms may not be shown 

with equal intensity (Caudwell 1990). FD was reported in most of the vinegrowing countries, 

including Italia (Vidano 1964), Switzerland (Schaerer et al. 2007) and Spain (Rahola et al. 1997). In 

France, FD is present in most vinegrowing areas, including the Bordeaux region (Bonfils & Schvester 

1960), menacing vineyard durability. Knowledge and forecasting of the disease spread are closely 

related to its spatio-temporal repartition. Thus, a regional surveillance system may include the analysis 

of repartition data (collected from ground survey or from remotely-sensed data) to check for potential 

small aggregated structures that might be problematic for the vineyard over the next years. 
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In this work, we study the patterns associated with the FD presence in vineyards located in La 

Brède, France, presenting various infection levels and various cultivar combinations, focusing here on 

the spatial analysis of FD repartition in the end of summer 2016. For this purpose, expert ground 

survey indicating the precise locations of symptomatic plants is considered as a basis for repartition 

analysis. Another approach may be the use of Unmanned Aerial Vehicle (UAV) or satellite based 

technologies coupled with image processing techniques, such as in (Albetis et al. 2017). However, an 

automatic detection of symptomatic plants based on reddening or yellowing spots may lead to a large 

amount of unreliable detections (false positives), due to the complex diversity of grapevine diseases. 

Thus, in the following, we do not focus on this detection step and decide to use the expert map of 

symptomatic plants to study the spatial pattern analysis of FD repartition in vineyards. 

Usually, the goal of spatial and temporal analysis is to exhibit the presence of spatial structures in 

the occurrences and propagation of symptomatic plants in a 2D space, which means the presence of 

non-random patterns. These popular methods in ecology fields (Velazquez et al. 2016) can also be 

applied to epidemics studies (Gatrell et al. 2009), due to the availability of field labeled data (position 

of symptomatic plants) spatialized on a lattice grid or in a GIS system. Examples include the study of 

disease patterns in tomato (Kawaguchi & Suenaga-Kanetani 2014) or mint (Johnson et al. 2006) fields. 

More specifically, pattern analysis applied on FD datasets was conducted in previous studies.  

A first description of FD incidence was reported in (Pearson et al. 1985). More recently, (Morone 

et al. 2007) gathered 5 years of FD incidence in 7 severely affected vineyards in Piemonte, Italia, 

describing the temporal infectivity and recovery rates of the disease. (Beanland et al. 2006) used 

spatial analysis over an 8-year period and surveyed the abundance of leafhoppers using traps. Inspired 

by the works of (Gray et al. 1986) and (Nelson 1995), their proposed methodology consists in a 

statistical test based on the distance between two symptomatic plants, using random simulations in 

order to empirically estimate the distribution of the statistic under the null hypothesis. Significant 

clustering and nonrandom repartitions were reported in that study. Similarly, (Pavan et al. 2012) 

observed on 4 vineyards monitored over a 5-year period a significant border effect in the occurrences 

of the symptoms on some of the plots, using the nearest distance to an edge of the vineyard. On one 

vineyard and 5 years of data, (Maggi et al. 2017) used nearest-neighbor but also quadrat based 

statistics to show clustering behaviors on a multiscale level. The latter shows some similarity with 

Ripley’s K function describing the spatial occurrences of a phenomenon in a given neighborhood  

(Besag 1977). A measure of the year-to-year isotropicity was also achieved but symptomatic plants 

seemed to progress in a non-isotropic way.  

The first contribution of this paper is to adapt the nearest neighbor method, in a similar fashion as 

Ripley’s K function, by considering the mean distance (rather than the number of occurrences) 

between an infected plant and its neighbors at a specific scale.  The second contribution is the proposal 

of an empirical nonparametric method to detect non-random patterns. This latter is based on a 

hypothesis test whose statistic is computed as the Kullback-Leibler divergence between distance 

histograms. In the following, this statistic will be compared to two other ones based on distance 

histograms. The paper is structured as follows. Section 2 presents the methodology and the different 

statistics used. Section 3 presents the evaluation of the methods on generated non-random datasets. 

Section 4 and 5 present the results on real FD data acquired during summer 2016. Finally some 

conclusions and future works are drawn in Section 6. 

2. Methodology 

2.1. Principle of the randomness test 

Similarly to the approach of (Beanland et al. 2006), randomness of the symptoms repartition is 

constructed as a simple statistical test. The test hypothesis can then be written as: 

 H0: the spatial occurrences of the plants can be considered random. 

 H1: the spatial occurrences aren’t random. 
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To test this hypothesis, nonparametric statistics are often used in order to highlight significant 

clustering or dispersion patterns in the vineyard at different scales. In this paper, we follow a similar 

approach.  In the case of FD, clustering is the most probable expected phenomenon. H0 hypothesis 

means symptom presence at a given spot is uniformly probable. Thus in order to simulate random 

repartitions, we model each plant location in the vineyard as a random variable X with a Bernoulli 

distribution. Given the proportion f of observed symptomatic plants in the real data, the distribution of 

this random variable is given as: 

Pr(𝑋 = 1) = 𝑓 , Pr(𝑋 = 0) = 1 − 𝑓  (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where 1 corresponds to the values of symptomatic locations and 0 to the values of non-symptomatic 

ones. It can be noted that, while the mean proportion of observed symptomatic plants per simulation 

tends towards f for a large number of repetitions, the individual proportion varies for each experiment 

(binomial distribution). In order to take into account the massive presence of missing plants in some of 

the plots, random simulations were conducted only on non-missing plants when considering the FD 

repartition. 

Once the test statistic distribution has been estimated under the null hypothesis, the p-value of the 

test can be computed. If the p-value is lower than the significance level α (e.g. 5%), the H0 hypothesis 

is rejected, meaning the spatial repartition is likely to be not random. However, there is a risk of an 

incorrect rejection of the null hypothesis (type I error or false positive) or an incorrect validation of the 

null hypothesis (type II error or false negative), meaning every decision comes with a risk. 

The proposed test statistics must account for the natural variability of random configurations in a 

given scale and be sensitive to non-random patterns in the vineyards. Spatial structure is related to the 

distance between diseased plants at different scales. This means computing the whole distance matrix 

(full neighborhood) or only considering distances within a fixed radius (local neighborhood). This 

distance matrix allows the construction of a distance histogram which can then be summarized using 

two different statistics. 

2.2. Statistic based on the mean distance to nearest-neighbor  

The nearest-neighbor method (as used in (Maggi et al. 2017) and (Beanland et al. 2006)) reduces 

the search radius to the nearest observed symptomatic plants. This is an indicator of small scale spatial 

relationships between plants. Aggregated patterns (or positive spatial autocorrelation) will be 

characterized by low nearest-neighbor distance while negative spatial autocorrelation means high 

nearest-neighbor distance. Note that there is no radius for the nearest-neighbor method. To summarize, 

this approach extracts the shortest pairwise distances between symptomatic plants and uses the mean 

distance as a statistic, whose simple form can be written as: 

𝑆 =  
∑ 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑛
 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

where n is the number of observed symptomatic plants. 

2.3. Statistic based on the mean distance to the neighbors in a radius  

In order to obtain a better description, the mean distance to neighbors method uses a fixed radius to 

threshold the distance histogram and thus is a generalization of the nearest-neighbor statistic by 

considering a scale parameter. It can also be viewed as a variant of the Ripley’s K function as used in 

(Maggi et al. 2017). Trends at larger scales (larger radius) can be encapsulated using the mean of that 

thresholded histogram. Similarly, small mean distance in a neighborhood may indicate a clustered 

structure in the dataset. Depending on the scale (radius), the significance of the test may vary, 

indicating aggregation patterns at specific scales. In that case, the statistic can be written in a simple 

form as: 

𝑆 =  
∑(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 < 𝑟𝑎𝑑𝑖𝑢𝑠)

𝑚
 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 
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where m is the number of pairs separated by a distance lower than the radius threshold.  

If we do not consider any threshold (i.e. infinite radius), m is equal to 
𝑛(𝑛−1)

2
 since all the unique 

pairwise distances are used for the computation. For all the other cases, m depends on the threshold 

and on the actual symptom repartition. It is worth noting that Ripley’s K at a given radius is 

proportional to m (Besag 1977). 

2.4. Proposed histogram divergence statistic 

However, when considering a mean distance value, information about the underlying distribution is 

lost. For that reason, we propose a statistic which takes into account the whole distance histogram. A 

measure of how far a given distance histogram is from an empirically estimated (again, using Monte-

Carlo runs) distance histogram is thus needed.  This is achieved using the Kullback-Leibler (KL) 

divergence (Kullback 1951) variant called Jensen-Shannon divergence (JSD) (Endres & Schindelin 

2003). Given two continuous probability distribution p and q, the KL dissimilarity is computed as: 

 

𝐷𝐾𝐿(𝑞‖𝑝) = ∫ 𝑞(𝑥) log
𝑞(𝑥)

𝑝(𝑥)
𝑑𝑥   (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

 

By working with discrete probability distributions P and Q, the KL divergence can then naturally 

be defined as: 

𝐷𝐾𝐿(𝑄‖𝑃) = ∑ 𝑄(𝑖) log
𝑄(𝑖)

𝑃(𝑖)
   (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5)

𝑖

 

Switching from continuous probability law to discrete histogram induces problematic cases where 

histogram count may be null, meaning potential division by zero. To overcome this issue, we remove 

zero values in the KL divergence computing. Using average distribution 𝑀 =
𝑃+𝑄

2
 allows us to 

compute the Jensen-Shannon divergence as: 

𝐽𝑆𝐷(𝑄, 𝑃) =  
𝐷𝐾𝐿(𝑄‖𝑀) + 𝐷𝐾𝐿(𝑃‖𝑀)

2
   (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

The JSD is similar to the standard KL but bears the advantage of being symmetric. Higher 

divergence values indicate high departure from the random histogram, meaning a one-tailed test can be 

set up using divergence histogram as the distribution under the null hypothesis. Similarly to the 

Ripley’s function, results allow to check the CSR hypothesis at different sampling scales as illustrated 

in Figure 1, in which the radius corresponds to the maximal distances for which two infected plants are 

considered neighbors and thus are used to compute the statistic. Here, grey zone corresponds to the 

acceptation zone of the H0 hypothesis (CSR). 
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Figure 1. Schematic explanation of the repartition analysis at several distances using the JSD between 

histograms as test statistic. (a) - Observed statistic (red curve) at a given radius can be compared to its 

distribution (grey confidence envelop, 5% and 95% quantiles) under the null hypothesis in order to 

confirm or reject it. (b) – Evolution of the related p-value, the dashed line represents the significance 

level (here α = 5%). 

 

In this paper, we use the euclidean distance as a measure of the distance between two plants. In the 

following sections, the above mentioned methods will be compared to simulated non-random datasets, 

then the one with the best performance will be applied on real datasets. All the experiments are 

conducted using the programming language MATLAB (R2015b, The MathWorks Inc.). 

3. Results 

3.1. Results on generated datasets 

In this section, we wish to evaluate how well each method performs on datasets with different 

properties. An accurate method must be able to discriminate random repartitions from nonrandom 

ones with minimal risk. The proposed methods are first applied on simple datasets with for example 

distinctive aggregation (maximal positive autocorrelation on set 1 of Figure 2.a) and dispersion 

patterns (maximum negative autocorrelation on set 2). The aim of this experiment is to evaluate the 

potential of the proposed models to identify 10 non-random repartitions. Figure 2 presents the 

evolution of the three test statistics on 10 user-created sets (Figure 2.a) for different radiuses. Using 

the mean-distance (Figure 2.c) and the divergence statistic (Figure 2.d), all the datasets lead to the 

reject of the H0 hypothesis for most radiuses using an alpha risk of 1%. The only exception here is set 

number 2 with its uniform repartition. In that case, while the distribution can’t be considered random, 

the mean-distance appears nearly identical as the ones computed for random datasets. Departure from 

random sets can be clearly seen using the nearest-neighbor statistic (Figure 2.b, very high mean 

distance to nearest neighbor) but also with the proposed histogram divergence statistic. 

http://dx.doi.org/10.17700/jai.2017.8.1.378
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Figure 2. (a) 10 simulated dataset with non CSR property (f=0.04, 50x50 grid) (b) - Mean nearest-

neighbor distance (unitless), (c) – Mean neighbors distance (unitless) and (d) - mean divergence 

(unitless) observed on the 10 datasets. Red lines correspond to the empirical quantities observed for 

random repartitions and different quantiles (potential H0 reject values for a corresponding α risk), 

black lines correspond to the observed distances on the 10 datasets. For clarity, divergence axis is 

presented on a log-scale. 

Methods are then applied to generated datasets with different properties. The symptom frequency f 

is considered here as the first critical parameter to take into account, the other one being the 

’randomness level’ (called r) of the repartition. Randomness is however hard to quantify. To obtain a 

quasi-continuous randomness level, we alter the uniformly equal random probability field under the 

H0 hypothesis to generate intermediate states between total randomness and a fully determined state. 

This is done by adding another random field using 2D Gaussian negative and positive spots of random 

sizes and orientations. Examples of generated repartitions using this method are shown in Figure 3. 

Symptom frequency f was chosen to fit the naturally observed disease and missing plants frequencies 

(e.g. from 1% to 32% as illustrated in Figure 5). The r values were chosen using linearly sampled 

values ranging from 0 (deterministic field) to 1 (unaltered uniform random field).  

 
Figure 3. Examples of generated symptom repartitions for 2 frequencies (f) and 6 randomness  

levels (r) 

This approach can be used for different symptom frequencies and repeated (here, we use 500 

repetitions per (f,r) couple to generate a wide array of repartitions) in order to obtain a set of simulated 

nonrandom repartitions. We can now compare totally random sets with non-random sets in order to 

assess the efficiency of the previously described methods. 

In order to evaluate the discriminative ability of each method, we use ROC curves (Fawcett 2006), 

a popular machine-learning visualization tool, applied on the p-value of the statistical test. In that case, 

ROC curves serve as a visual illustration of the first and second order risks. For a given false alarm 

rate (proportion of false decisions induced by the test reject), ROC curves allow to determine the 

expected true alarm rate (proportion of true positives). The area under the curve (AUC) is also an 

indicator (ranging from 0 to 1) of how well random repartitions are separated from non-random ones. 

Figure 4 gives an illustration on the process behind the creation of ROC curves. Here values in red 

indicate the p-values obtained from random datasets while p-values in blue correspond to the ones 

obtained on non-random datasets. The best case means that it is possible to set a threshold to perfectly 

http://dx.doi.org/10.17700/jai.2017.8.1.378
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separate random repartitions from non-random ones based on the computed p-values. In that case, the 

AUC is equal to 1. 

 
Figure 4. ROC curves generation methodology. AUC indicates how well non-random disease 

repartitions can be separated from random repartitions when fixing a critical p-value threshold to the 

test 

Results on the generated datasets (f ranging from 0.01 to 0.32, r=10 randomness levels) can be 

consulted in Figure 5. Total randomness column compares random repartitions with random 

repartitions, thus all the ROC curves follow the y=x line. For almost every set of parameters, the 

divergence statistic yields to the best AUC, meaning better ability to set apart random repartitions 

from non-random ones and more sets with close-to-zero risk (AUC=1) when rejecting the H0 

hypothesis. It also shows less sensitivity to the f parameter than the other two methods. As expected, 

the nearest-neighbor method tends to perform poorly on repartitions with high disease occurrences. In 

such case, the mean distance to the nearest diseased neighbor may be very low, and may lead in some 

cases to random decision (AUC=0.5). The nearest-neighbor method seems to be nearly as effective as 

the other methods if the local density of infected plants is not too high.  

.  

Figure 5. ROC curves computed for different (frequency, randomness) couples using nearest-neighbor 

distance statistics (green curves), local mean-distance statistics (blue curves) and local divergence 

statistics (red curves). Maximal radius was considered for this experiment 

Since the proposed statistic based on the histogram divergence has shown the best performance on 

these datasets, this method will be used in the following on real FD dataset acquired on La Brède test 

site. 
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4. Results on real flavescence dorée data 

4.1. Studied vineyards and field campaign 

Experiments were conducted in 7 vineyard plots near La Brède in the Bordeaux region (Figure 6). 

In this region, FD occurrence was diminishing from 2012 to 2015 but it seemed on the rise since then. 

Average plant density in the vineyards is about 2000ha-1. The vineyards exhibit various sizes, 

orientations and cultivar combinations combined with FD outbreaks. 

 
Figure 6. Geographic location of the 7 study (L1 to L7) vineyards in the La Brède municipality  

(WGS 84 coordinates: -0° 31' 58.58",44° 41' 29.87"), Nouvelle Aquitaine region, France. Satellite 

image: Google Earth. 
 

The monitoring of FD symptoms was conducted during summer 2016, on September 8. The 

presence of FD was evaluated using a protocolar grid indicating FD severity on a 4 levels scale (from 

faint foliar symptoms to full foliar symptoms) and possible confusion risks with other diseases. 

Photographs of the symptomatic plants were also taken in order to check later on for these confusions. 

Figure 7 presents the result of the field campaign in a grid representation of the symptomatic and 

missing plants in the 7 vineyards. Using aerial imagery, gridded symptomatic plants positions were 

also georeferenced (relatively to the position of rows extrema observed on the aerial image) and 

included in a GIS software (QGIS 2.16), allowing a more precise distance measurements between 

symptomatic plants.  

 
Figure 7. Grid view of the field notation campaign data. Gray pixels: Healthy Plants. Black pixels: 

Missing plants, Pink pixels: FD symptomatic plants. 

Most missing plants in the vineyards likely come from former uprooted FD symptomatic plants. 

Vineyard L1 particularly bears the trace of previous epidemics, with a missing plant proportion 

superior to 50%. On the other vineyards, it ranges from 20% to 40%. FD symptom occurrences vary 

from one vineyard to another, ranging from 1% to 4% of the total sampled plants. Observed 

proportions are summarized in Table 1, as well as a list of the cultivars present in the vineyard. 
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Table 1 - Description of the 7 studied vineyards 

Vineyard L1 L2 L3 L4 
L5 L6 L7 

Cultivars 
Cabernet-

Sauvignon 

Merlot, 

Sémillon 

Merlot, 

Sauvignon 

Blanc 

Cabernet-

Sauvignon, 

Merlot 

Merlot, 

Sémillon 

Cabernet-

Sauvignon 

Cabernet-

Sauvignon 

Number of plants 3084 1222 1688 1448 1103 1652 1603 

Number of rows 25 15 22 12 17 43 26 

Frequencies (f) 

Healthy plants 25.3% 65.7% 57.7% 52.7% 73.7% 57.8% 61.9% 

Missing plants 62.5% 30.8% 37.5% 39.6% 19.9% 38.3% 25.4% 

Flavescence dorée 2.4% 2.8% 1% 2% 4.1% 2% 1.6% 

Other diseases 9.8% 0.7% 3.8% 5.7% 2.3% 1.9% 11.1% 

Figure 8 summarizes the main results obtained on this dataset. Several tests are performed on the 7 

studied vineyards using the best-performing methods previously described. The first test involves 

simple random hypothesis. It aims to determine if according to the spatial occurrences, the repartition 

can be considered as random. It is applied to FD plants (Figure 8.a), but also on missing plants (Figure 

8.b). The second test aims at determining if a border effect is present in the vineyard (Figure 8.d), i.e. 

FD/missing plants are closer to the edges than in random repartitions. This is achieved using the 

nearest-neighbor statistic method, which is preferred here since only the distance to the nearest border 

is of interest. Eventually, we wish to know if a spatial relationship between FD symptoms locations 

and missing-plants location exists. For that purpose, we construct a test based on the divergence 

method, using the distance from FD affecting plants to missing plants, simulating both random 

repartitions (using respective f values) for each Monte-Carlo run (Figure 8.c).  

 
Figure 8. Test statistics (red curves and points) obtained on the La Brède dataset. Values falling 

outside the grey confidence envelope (5% confidence) indicate H0 reject and non-random behaviors. 

(a) to (c) test based on JSD (for varying threshold distances) while (d) considers the nearest-neighbor 

distance and thus is conducted without any distance threshold.  

When setting the significance risk α to 5%, all the vineyards reject the null hypothesis for the 

missing plants repartition for small maximum distance (radius) indicating a nonrandom repartition, the 

reject was however not significant at large scale for plots 1 and 4. FD repartition was found to be 

nonrandom on plots 4 to 7, while plots 1 to 3 never reject the H0 hypothesis. Similar interpretations 

http://dx.doi.org/10.17700/jai.2017.8.1.378
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can be made for the edge effect test, featuring reject on 4 plots for FD repartition and all the 7 plots for 

the missing plants repartition, which supports the results of (Pavan et al. 2012) and (Maggi et al. 2017) 

on the observed edge effect in vineyards affected by FD. Tests considering the proximity of diseased 

plants with missing plants (Figure 8.c) yield reject on most vineyards at small scale except for plots 2 

and 3, leading to the confirmation that missing plants and FD diseased plants are spatially linked, 

showing significant attraction patterns. The proximity with missing plants seems especially significant 

on vineyard 4 and 5 in which nonrandom patterns can be observed at small and large scales, which 

corroborates the visual observation of FD affected plants located nearby clusters of rogued out plants. 

5. Discussion 

While statistical non-parametric methods using Monte-Carlo simulations provide a flexible 

framework for the repartition analysis, several potential pitfalls remain. Important missing plants 

proportions are still an issue because they limit the potential number of possible locations for 

simulated symptoms, meaning fewer combinations and blurrier frontier between random and non-

random patterns. This is the case for vineyards with more than half of missing plants such as vineyard 

number 1. Similarly, the joint presence of several cultivars in the vineyards calls for prudent 

interpretations. This doesn’t apply to pure Cabernet Sauvignon plots such as 1, 6 and 7 but the other 

exhibit mixed cultivars, whose susceptibility to the disease may be different. The presence of a 

different cultivar on the border of the plot, such as in vineyard 5, may lead to the hypothesis reject 

because symptomatic plants are more frequent near this border and thus the repartition may not appear 

random. This study provides a repartition analysis tool which can be embedded into an epidemics 

surveillance system. Prior steps to the analysis may include ground field notation or more innovative 

tools such as satellite or UAV imagery, both used to obtain spatialized information about the disease 

repartition. Symptomatic plants positions can then be analyzed in order to check for potential 

threatening aggregations patterns, even for low FD prevalence. 

6. Perspectives and conclusion 

In this study, we have proposed a simple nonparametric statistical framework using a divergence 

histogram statistic taking into account the distance histogram in a given radius. Results on generated 

datasets indicate better separation between random repartitions and non-random ones using the 

divergence method. Better generation of simulated repartitions may include the control over specific 

aggregation patterns such as outbreak size or edge-effect. Applications on real FD data indicate 

significant non-random aggregation patterns on some of the studied plots, as well as an edge effect and 

a possible spatial correlation between missing plants and FD symptoms. This method could be applied 

to the temporal study of FD propagation, using yearly datasets. Spatial pattern studies could also be 

coupled with other exogenous variables such as spatial leafhopper abundance in the vineyard as in 

(Pavan et al. 2012). 
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