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A B S T R A C T 
 

Determining the value of the residues of crops grown on arable land is a non-trivial task, 

depending much on how it is defined. In this paper the value of residues is considered to 

be the savings achieved on the total expense of artificial fertilizer distribution by returning 

the residues into the soil. A general linear programming approach is presented to obtain 

optimal artificial fertilizer allocation. Since the amount of artificial fertilizers required 

depends on uncertain inputs Monte Carlo simulation is applied in conjunction with linear 

programming to solve the arising stochastic optimization problem. The input data, such as 

the national average yield, specific amounts of nutrients required by crops to achieve the 

national average yield and publicly available details of different artificial fertilizer 

products are specific to Hungary, but the mathematical model presented is general in 

nature. Simulations are executed for some of the major crops, including wheat, corn, 

sunflower and rape. The distribution of savings achieved on returning their residues to the 

soil is provided at the end of the paper for further use. 

  

1. Introduction 

The value of crop residues can be defined in many ways, and depending on this definition different 

qualitative or quantitative measures can be determined. In this paper the definition is chosen to be the 

savings achieved on artificial fertilizing caused by the amount of nutrients returned into the soil, which 

can be described with a quantitative measure, namely the difference of the total expense of the 

fertilizing process with and without returning crop residues to the soil. Determining the value of crop 

residues this way used to be an elaborate and complex task, but its results are extremely useful – 

especially in financial decision support. It is required to answer common questions such as whether 

crop residue should be collected and sold or returned to the soil instead. 

The planning of artificial fertilizer allocation of different fields is a six-step process. First, the 

expected yield (in kg/m2) of the crop sowed into a field has to be decided. Next, the amount of 

nutrients – nitrogen (N), phosphorus (P) and potassium (K) – stored in the field are measured. The 

third step is to determine the specific nutrient requirements (kg of nutrient / kg of yield) of the crop. 

After this, the quantified nutrient requirements are calculated (in kg/m2). The fifth step is to perform 

the correction of the quantified nutrient requirements, and lastly the optimal amounts of the different 

artificial fertilizer products are allocated to the field (eds Nábrádi, Pupos & Takácsné,2007). 

The methods of operations research are scientific approaches to decision making, seeking to best 

design and operate systems under conditions, usually with the help of mathematical models. Such 

models consist of three components: objective function(s), decision variables and constraints. 

Optimization models seek to find the values of the decision variables that optimize (maximize or 

minimize) an objective function so that the given constraints are satisfied. If the objective function and 

the constraints can be written as linear combinations of the decision variables the optimization 

problem can be solved with linear programming (Winston & Goldberg, 2004). To this day many 

textbooks on agricultural management teach only heuristic approaches to solve such problems, 

including the allocation of artificial fertilizer. By applying these approaches one is unlikely to find an 

optimal solution - even though simple linear programs could be used instead to obtain optimal 
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allocations, they still lack public awareness in Hungary (even in the ranks of professional agricultural 

engineers). Since the 85-95% of the total expense of artificial fertilizing comes from the cost of the 

artificial fertilizer itself the optimal choice of products is unquestionably crucial (eds Nábrádi, Pupos 

& Takácsné, 2007). 

There are important but difficultly quantifiable factors which have to be taken into consideration 

throughout the planning of artificial fertilizer allocation though. These factors are the amount of 

nutrients stored in the soil and the required amount of nutrients of a crop to achieve an expected yield. 

Their values are usually estimated based on lower and upper bounds provided in textbooks and 

professional experience. In a mathematical point of view they should be represented with random 

variables. Random variables take on specific values with specific probabilities – these value-

probability pairs are described by probability distributions (Durrett, 2013). By including random 

variables we include uncertainty into the optimization model, thus arrive at a stochastic programming 

problem (King & Wallace, 2012). A common solution approach is simulation – we generate scenarios 

by taking samples from the probability distributions and solve the original problem for each scenario 

(Prékopa, 1995). One such sampling method is the Monte Carlo method – among all the numerical 

methods that rely on n-point evaluations in an m-dimensional space the absolute error of the Monte 

Carlo approximation decreases fastest, which gives the method an edge as the size of the problem 

increases (Fishman, 1996). 

The application of linear programming or Monte Carlo simulation is not an extraneous concept in 

agricultural sciences either. Experimenting and prototyping are useful tools, but they are not able to 

provide on-time answers as opposed to simulation methods. A four-step iterative process is proposed 

in (Bergez, Colbach, Crespo, Garcia, Jeuffroy, Justes, Loyce, Munier-Jolain & Sadok, 2010) to design 

crop management systems with simulation. First a seed (consisting of strategies or decision rules) 

must be defined that is going to be used to generate crop management plans. In the second stage the 

simulation of such plans is executed. The third step involves evaluating the simulated plans, and lastly 

the interesting crop management options are selected and/or the seed is improved, starting a new 

iteration. Aldeseit used a linear programming model to determine least-cost synthetic fertilizer 

combinations and showed how important the application of linear programming might be (Aldeseit, 

2014). A general mixed integer programming (MIP) model is introduced in (Hansson, Svensson, 

Hallefält & Diedrichs, 1999) that is capable of optimizing the amount of fertilizing products that have 

to be applied in each year of a cutting cycle of energy crops. Their model lacks the presence of 

uncertainty though, and it does not consider discretizing the total area into fields, which may affect 

optimal allocations. The model of Mínguez, Romero and Domingo approaches fertilizer allocation 

differently. Their model does not require nutrient requirements to be satisfied by all means – it views 

these requirements only as targets that should be achieved and penalizes the differences, allowing a 

more flexible and realistic specification of lower and upper limits of nutrients (Mínguez, Romero & 

Domingo, 1988). A possible application of simulation in conjunction with linear programming is 

shown to maximize the nutrient contents of compost manure prepared using pig dung, buffalo dung, 

green manure and concentrated super phosphate in (Minh, Ranamukhaarachchi & Jayasuriya, 2007). 

Simulation and linear programming are also applied in soil erosion control (Segarra, Kramer & Taylor, 

1985), irrigation management (Li, Lu, He and Shi, 2014) and urban water management (Zhu, Marques 

& Lund, 2005), working schedule planning (Matsui, Inoue, Matsushita, Yamada, Yamamoto & 

Sumigama, 2005), organic farming risk management (Lauwers, Decock, Dewit & Wauters, 2010), etc. 

2. Material and method 

To model the total expense of fertilizing with and without returning crop residues to the soil Monte 

Carlo simulation is applied in conjunction with linear programming. First the mathematical model 

involved in Monte Carlo simulation is described in details, followed by the optimization model. Data 

is provided only for wheat, corn, sunflower and rape, but the mathematical models presented are 

independent from the data and can be extended easily. 

2.1. Monte Carlo model 
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The Monte Carlo model is similar in nature to that of the four-step process proposed in (Bergez, 

Colbach, Crespo, Garcia, Jeuffroy, Justes, Loyce, Munier-Jolain & Sadok, 2010). The seed used for 

generating scenarios is defined as follows. It is assumed that the hypothetical total area (denoted with 

TA) involved in the calculations consists of 10,000,000 square meters (1,000 hectares) – an area of 

such magnitude ensures statistically representative results. The savings are simulated for each crop 

independently - it is also assumed that in every simulation only the kind of crop that is under 

simulation has been harvested from the whole area. The crops involved in the simulation are presented 

as the set C, such that 

 𝐶 = {𝑤ℎ𝑒𝑎𝑡, 𝑐𝑜𝑟𝑛, 𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟, 𝑟𝑎𝑝𝑒}. (1) 

The total area is then divided into 𝑛 = |𝐶\{𝐻𝐶}| fields – one field for the next generation of each 

different crop other than the one previously harvested (denoted with 𝐻𝐶), in accordance with the crop 

rotation principle. To obtain general results the area of the fields (denoted with Ai) should vary 

between 0 m2 and 10,000,000 m2, but the sum of their expected values should equal the total area. 

Such partitioning can be achieved by using PERT distributions (Vose, 2008). The expected value of a 

PERT distribution is calculated as 

 
𝑬 =

𝑎 + 4 × 𝑚 + 𝑏

6
, (2) 

 

where a and b are the lower and upper bounds, and m is the most likely value (Malcolm, Roseboom & 

Clark, 1959). The a and b parameters are 0 and TA respectively, but the m parameter has to be 

specified. To obtain PERT distributions with these lower and upper limits, and expected values 

summing to the total area we have 

 

 𝑇𝐴

𝑛
=

0 + 4 × 𝑚 + 𝑇𝐴

6
, (3) 

from which we get that 

 

𝑚 =

𝑇𝐴
𝑛 × 6 − 𝑇𝐴

4
 . (4) 

Another constraint is that the sum of the areas of all the fields must equal the total area, which can be 

enforced as follows: 

 

𝐴𝑖~min (𝑃𝐸𝑅𝑇(0, 𝑚, 𝑇𝐴), 𝑇𝐴 − ∑ 𝐴𝑘

𝑖−1

𝑘=0

) , where 

𝑖 ∈ {1,2, … 𝑛} and 
𝐴0 = 0 . 

(5) 

 

This constraint biases 𝐴2, 𝐴3, …, 𝐴𝑛 though. To lessen the bias effects the values of 𝐴1, 𝐴2,…,𝐴𝑛 are 

permuted randomly in every iteration of the simulation. The permuted areas are then always assigned 

to the different crops in a linear order. 

The yield of field i can be defined as 

 

𝑌𝑖 = ∬ 𝑢(𝑥, 𝑦) 𝑑𝐹𝑖

𝐹𝑖

, 
(6) 

where 𝐹𝑖 represents the boundaries of field i, and 𝑢(𝑥, 𝑦) is the function describing the yield of field i 

in its specific points. A simulation of fields as described in (5) does not specify the boundaries, only 

the area of each field. Even if the boundaries would be specified 𝑢(𝑥, 𝑦) would be a multivariate 

probability density function that had to be estimated. To simplify the problem fields are discretized 

into one dimension, namely into sequences of squared meters. This way the estimation problem boils 
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down to fitting univariate probability distributions to historical yield data. The lower and upper limits 

of the national average yield are provided in Table 1. The average yield, combined with the area of the 

previously described fields can be used to calculate the amount of nutrients returned by the crop 

residues to each field. The lower yield limits (LYL) and upper yield limits (UYL) are based on 

historical data from 2004 to 2014 stored by the Hungarian Central Statistical Office.  

Table 1. Lower and upper limits of national average yield 

Harvested Crop 

(HC) 

Lower (LYL) 

[kg/m2] 

Upper (UYL) 

[kg/m2] 

Wheat 0.4 0.6 

Corn 0.4 0.8 

Sunflower 0.2 0.26 

Rape 0.2 0.3 

It is acceptable to assume that the average yield of the different crops is uniformly distributed between 

these limits – the Kolmogorov-Smirnov p-values are 0.799, 0.1561, 0.799 and 0.871, respectively. 

That said, the yield of the kth square meter in field i (denoted with 𝑦𝑖,𝑘) is described formally as 

 𝑦𝑖,𝑘 ~ 𝑈(𝐿𝑌𝐿𝐻𝐶𝑖
, 𝑈𝑌𝐿𝐻𝐶𝑖

), where 

𝑘 ∈ {1,2, … , 𝐴𝑖}, and 
(7) 

 

the HCi index denotes the crop that has been harvested from field i. The yield of field i (denoted with 

𝑌𝑖) is the sum of the yield of each square meter within said field. Since it is assumed that the yields of 

the square meters are independent and identically distributed, and the number of square meters in each 

field is expected to be very high, the yield of field i can be approximated with a normal distribution (in 

accordance with the central limit theorem) as follows: 

 

𝑌𝑖 = ∑ 𝑦𝑖,𝑘

𝐴𝑖

𝑘=1

~𝑁 (𝐴𝑖 × 𝑬(𝑦𝑖,1), √𝐴𝑖 × 𝑽𝒂𝒓(𝑦𝑖,1)) = 

= 𝑁 (𝐴𝑖 ×
𝐿𝑌𝐿𝐻𝐶𝑖

+ 𝑈𝑌𝐿𝐻𝐶𝑖

2
, √𝐴𝑖 ×

1

12
(𝑈𝑌𝐿𝐻𝐶𝑖

− 𝐿𝑌𝐿𝐻𝐶𝑖
)

2
), 

(8) 

 

where E is the expected value operator and Var is the variance operator. The ratio of nutrients released 

from crop residue is provided in Table 2. These values are also essential in calculating the total 

amount of nutrients returned into each field. 

Table 2. Ratio of nutrients released from 1 kg of crop residue  

(Sebestyén, Baranyai & Boldis 1983) 

Harvested Crop 
Returned nutrient ratio (RNR) 

N P K 

Wheat 0.005 0.003 0.008 

Corn 0.006 0.002 0.006 

Sunflower 0.008 0.003 0.001 

Rape 0.004 0.002 0.005 

The amount returned from nutrient j into field i is denoted with 𝑅𝑖
𝑗
 and equals the product of the yield 

of field i (denoted with 𝑌𝑖) and the returned ratio of nutrient j from the harvested crop on field i 

(denoted with 𝑅𝑁𝑅𝐻𝐶𝑖

𝑗
), formally: 

 𝑅𝑖
𝑗

= 𝑌𝑖 × 𝑅𝑁𝑅𝐻𝐶𝑖

𝑗
, where 

𝑗 ∈ {𝑁, 𝑃, 𝐾} . 
(9) 
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It is assumed that each generation of crop fully exhausts the soil, meaning that only 𝑅𝑖
𝑗
 is available for 

the next generation – the rest has to be supplied with artificial fertilizer. 

The amount of nutrients required by a specific crop to achieve the national average yield varies 

between certain limits, as shown in Table 3. 

Table 3. Nutrient amount ranges required for achieving the national average yield 

(eds Bocz, Késmárki, Kováts, Ruzsányi and Szabó, 1992) 

Planned Crop 

(PC) 

Nutrient requirement [kg/m2] 

N P K 

Lower 

(𝐿𝑁𝐿𝑁) 

Upper 

(𝑈𝑁𝐿𝑁) 

Lower 

(𝐿𝑁𝐿𝑃) 

Upper 

(𝑈𝑁𝐿𝑃) 

Lower 

(𝐿𝑁𝐿𝐾) 

Upper 

(𝑈𝑁𝐿𝐾) 

Wheat 0.0135 0.0135 0.0068 0.0068 0.0100 0.0100 

Corn 0.0120 0.0200 0.0066 0.0204 0.0066 0.0204 

Sunflower 0.0030 0.0080 0.0040 0.0120 0.0080 0.0140 

Rape 0.0050 0.0110 0.0070 0.0080 0.0080 0.0100 

Mathematically the amount required from nutrient j in the kth square meter of field i is a random 

variable, denoted with 𝑋𝑖,𝑘
𝑗

. It is assumed that the values of these random variables are independently 

and identically uniformly distributed between the aforementioned lower and upper limits. The lower 

nutrient limit from nutrient j for a square meter of field i is denoted with 𝐿𝑁𝐿𝑃𝐶𝑖

𝑗
, where the 𝑃𝐶𝑖 index 

indicates the planned crop in field i in next year’s crop rotation plan. 𝑈𝑁𝐿𝑃𝐶𝑖

𝑗
 denotes the upper 

nutrient limit in a similar way. Formally, 

 𝑋𝑖,𝑘
𝑗

~ 𝑈(𝐿𝑁𝐿𝑃𝐶𝑖

𝑗
, 𝑈𝑁𝐿𝑃𝐶𝑖

𝑗
) . (10) 

The nutrient requirement of field i from nutrient j, denoted with 𝑁𝑅𝑖
𝑗
, can be calculated by taking the 

sum of the nutrient requirement of every square meter in that field. Since it is assumed that every 𝑋𝑖,𝑘
𝑗

 

is independent and identically distributed the central limit theorem is applicable: 

 

𝑁𝑅𝑖
𝑗

= ∑ 𝑋𝑖,𝑘
𝑗

𝐴𝑖

𝑘=1

 ~ 𝑁 (𝐴𝑖 × 𝑬(𝑋𝑖,1
𝑗

), √𝐴𝑖 × 𝑽𝒂𝒓(𝑋𝑖,1
𝑗

)) = 

= 𝑁 (𝐴𝑖 ×
𝐿𝑁𝐿𝑃𝐶𝑖

𝑗
+ 𝑈𝑁𝐿𝑃𝐶𝑖

𝑗

2
, √𝐴𝑖 ×

1

12
(𝑈𝑁𝐿𝑃𝐶𝑖

𝑗
− 𝐿𝑁𝐿𝑃𝐶𝑖

𝑗
)

2
) . 

(11) 

At this point the seed for generating scenarios is fully defined – based on these rules the second 

step (the simulation of scenarios) can be executed. The third step of the process is the evaluation of 

each scenario. To get the value of the crop residues the total expense of fertilizing with and without 

returning the residues to the soil has to be determined - their difference is the actual amount saved on 

fertilizing. To obtain the total expenses the optimization problem described in the next chapter has to 

be solved. 

2.2. Optimization problem 

Calculating the total expense of fertilizing is a stochastic optimisation problem. The problem is 

solved by running Monte Carlo simulations to generate the possible nutrient requirement scenarios and 

applying linear programming to obtain the most cost efficient fertilizer allocation for each scenario. 

Table 4 contains publicly available data on artificial fertilizers, namely the ratio of nutrient j in 1 kg of 

fertilizer f (denoted with 𝑅𝑁𝐹𝑓
𝑗
) and its price (with taxes). The products are indicated with the index 

𝑓 ∈ {𝐴𝐹1, 𝐴𝐹2, … , 𝐴𝐹15}. The LP used is described as follows. 
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Table 4. Publicly available data of artificial fertilizer products 

Product 
Ratio of nutrients in 1 kg of fertilizer (RNF) Avg. Price 

[HUF/kg] N P K 

AF1 0.12 0.52 0.0 105.30 

AF2 0.27 0.0 0.0 117.28 

AF3 0.18 0.25 0.0 157.40 

AF4 0.0 0.1 0.24 125.08 

AF5 0.15 0.15 0.15 164.40 

AF6 0.04 0.12 0.32 142.20 

AF7 0.06 0.12 0.24 132.77 

AF8 0.08 0.21 0.21 155.05 

AF9 0.0 0.0 0.6 172.98 

AF10 0.0 0.205 0.0 98.78 

AF11 0.34 0.0 0.0 165.29 

AF12 0.11 0.11 0.21 301.63 

AF13 0.08 0.11 0.23 298.45 

AF14 0.45 0.0 0.0 325.19 

AF15 0.12 0.11 0.18 301.64 

Sources: www.agro-store.hu, www.mutragya.hu, www.gazdabolt.hu, March 3, 2015. 

2.2.1. Variables 

𝑋𝑖,𝑓: Real-valued variables, representing the amount of artificial fertilizer f allocated to field i in 

kilograms (not to be confused with 𝑋𝑖,𝑘
𝑗

, which are random variables in the simulation). 

𝑌𝑖,𝑓: The binary equivalent of 𝑋𝑖,𝑓 (a flag representing whether any amount of fertilizer f is allocated to 

field i – also not to be confused with 𝑌𝑖). 

𝑍𝑖: The number of different types of artificial fertilizer allocated to field i. 𝑍𝑖 is calculated as 

 𝑍𝑖 = ∑ 𝑌𝑖,𝑓

∀𝑓

 . (12) 

2.2.2. Objective function 

The objective is to minimize the total expense of fertilizing. The expense of fertilizing consists of 

two components: the cost of artificial fertilizer and the aggregated cost of its distribution. The 

aggregated cost of distributing artificial fertilizer in 2014 in Hungary is 0.2889 Ft/m2 (Gockler, 

2014). It is assumed that only one kind of artificial fertilizer can be distributed simultaneously on each 

field – therefore the aggregated cost of distributing fertilizer on a field should be multiplied by the 

number of different fertilizers allocated to said field. The objective function can be written as 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (∑ 𝑋𝑖,𝑓 × 𝑃𝑟𝑖𝑐𝑒𝑓

∀𝑓

+ 𝑍𝑖 × 𝐴𝑖 × 0.2889)

∀𝑖

 . (13) 

2.2.3. Constraints 

The objective is subject to only two kinds of constraints, namely to satisfy the different nutrient 

requirements of each field and non-negativity. The right hand side of the nutrient requirement 

constraints depend on whether crop residues are returned to the soil or not. Equation (13.a) shows the 

constraints given no residue is returned, while equation (13.b) shows the (corrected) constraints when 

crop residues are returned. Equation (14) is the non-negativity constraint. 

 ∑ 𝑋𝑖,𝑓 ×

∀𝑓

𝑅𝑁𝐹𝑓
𝑗

≥ 𝑁𝑅𝑖
𝑗
, ∀𝑖, 𝑗. (14.a) 
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 ∑ 𝑋𝑖,𝑓 ×

∀𝑓

𝑅𝑁𝐹𝑓
𝑗

≥ 𝑁𝑅𝑖
𝑗

− 𝑅𝑖
𝑗
, ∀𝑖, 𝑗. (14.b) 

 
𝑋𝑖,𝑓 , 𝑌𝑖,𝑓 , 𝑍𝑖 ≥ 0, ∀𝑖, 𝑓. (15) 

 

3. Simulation results 

Reaching a convergent state is a key factor in case Monte Carlo simulations are involved. After 

10,000 iterations the simulated results converge (Figures 1-4, convergent state represented by red 

dashed lines). 

 
Figure 1. Convergence of wheat savings 

 
Figure 2. Convergence of corn savings 

 

 
Figure 3. Convergence of sunflower savings 

 
Figure 4. Convergence of rape savings 

The expected value and standard deviation of savings are presented in Table 5. We can see that the 

standard deviations are very low, but considering that these values pertain only to a square meter the 

effects of uncertainty can vary in wide ranges given a high number of square meters involved.  

Table 5. Expected value and standard deviation of savings 

Residue Expected value [Ft/m2] Standard deviation [Ft/m2] 

Wheat 2.4069174 0.0256387 

Corn 2.7877342 0.0362423 

Sunflower 0.9394069 0.0110463 

Rape 4.0223666 0.1815932 

To provide a better understanding of this uncertainty the probability distributions of savings are 

included as well (Figures 5-8, expected values represented by red lines). 
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Figure 5. Relative frequencies of savings on wheat residue 

 

 

Figure 6. Relative frequencies of savings on corn residue 
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Figure 7. Relative frequencies of savings on sunflower residue 

 

Figure 8. Relative frequencies of savings on rape residue 

This uncertainty affects risks, thus has to be taken into consideration by financial decision making 

processes. Unfortunately no distributions fitted to the simulated data managed to achieve statistical 

significance based on the Kolmogorov-Smirnov, Anderson-Darling and 𝜒2 goodness-of-fit tests. 

Instead, the minimum and maximum values, the quartiles, and the 5th and 95th percentiles are provided 

(Table 6). 
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Table 6. Quantiles of the savings distributions 

Residue Min Q0.05 Q0.25 Q0.5 Q0.75 Q0.95 Max 

Wheat 2.3921173 2.3923930 2.3924884 2.3925728 2.4128814 2.4682789 2.5100094 

Corn 2.7065644 2.7461959 2.7621547 2.7798875 2.8008799 2.8698510 3.0358627 

Sunflower 0.9352570 0.9359759 0.9360951 0.9361143 0.9361382 0.9670020 1.0097617 

Rape 3.3205631 3.6987188 3.8999960 4.0329339 4.1709930 4.2785655 4.3597880 

4. Conclusions 

A mathematical model has been created that utilizes Monte Carlo simulation and linear 

programming to obtain the distribution of savings on residues of crops grown on arable land. The 

model is based on general concepts and it can be used not only to determine the value of crop residues 

but also to optimize artificial fertilizer allocation for any number of fields with differing planned crops 

and residues. Although the model assumes that crops fully exhaust the soil nutrients left in the field 

can be included into the calculations by adding them to 𝑅𝑖
𝑗
. Application of this model has different 

positive effects as well. The permanent dosage of high amounts of artificial fertilizer sours the soil – 

by optimizing the required amount this process can be slowed down. The distributions of savings can 

also be involved in further simulations to support decision makers. It is important to note that these 

distributions are based on nationwide data – in different regions they might look different. Researchers 

or other individuals are welcome to the Python implementation of the model upon personal request or 

by downloading it from the journal web site. 
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